
Package: designit (via r-universe)
September 18, 2024

Title Blocking and Randomization for Experimental Design

Version 0.5.0.9000

Description Intelligently assign samples to batches in order to reduce
batch effects. Batch effects can have a significant impact on
data analysis, especially when the assignment of samples to
batches coincides with the contrast groups being studied. By
defining a batch container and a scoring function that reflects
the contrasts, this package allows users to assign samples in a
way that minimizes the potential impact of batch effects on the
comparison of interest. Among other functionality, we provide
an implementation for OSAT score by Yan et al. (2012,
<doi:10.1186/1471-2164-13-689>).

License MIT + file LICENSE

URL https://bedapub.github.io/designit/,

https://github.com/BEDApub/designit/

BugReports https://github.com/BEDApub/designit/issues

Depends R (>= 4.1.0)

Imports rlang (>= 0.4.0), dplyr (>= 1.0.0), purrr, ggplot2, scales,
tibble, tidyr, assertthat, stringr, R6, data.table, stats

Suggests testthat, roxygen2, pkgdown, knitr, markdown, rmarkdown, gt,
bench, OSAT, tidyverse, printr, devtools (>= 2.0.0), ggpattern,
cowplot, bestNormalize, here

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

VignetteBuilder knitr

Repository https://bedapub.r-universe.dev

RemoteUrl https://github.com/bedapub/designit

RemoteRef HEAD

RemoteSha 61dbbbe73c7b952cfcda4798504702248f95a50c

1

https://doi.org/10.1186/1471-2164-13-689
https://bedapub.github.io/designit/
https://github.com/BEDApub/designit/
https://github.com/BEDApub/designit/issues

2 Contents

Contents

accept_leftmost_improvement . 3
assign_from_table . 3
assign_in_order . 4
assign_random . 5
BatchContainer . 6
BatchContainerDimension . 10
batch_container_from_table . 11
compile_possible_subgroup_allocation . 12
complete_random_shuffling . 13
drop_order . 13
first_score_only . 14
form_homogeneous_subgroups . 14
generate_terms . 16
get_order . 16
invivo_study_samples . 17
invivo_study_treatments . 17
L1_norm . 18
L2s_norm . 19
locations_table_from_dimensions . 19
longitudinal_subject_samples . 20
mk_exponentially_weighted_acceptance_func . 21
mk_plate_scoring_functions . 21
mk_simanneal_acceptance_func . 23
mk_simanneal_temp_func . 23
mk_subgroup_shuffling_function . 24
mk_swapping_function . 26
multi_trt_day_samples . 27
optimize_design . 27
optimize_multi_plate_design . 29
osat_score . 30
osat_score_generator . 31
plate_effect_example . 32
plot_plate . 33
shuffle_grouped_data . 34
shuffle_with_constraints . 36
shuffle_with_subgroup_formation . 37
sum_scores . 38
validate_samples . 39
worst_score . 39

Index 40

accept_leftmost_improvement 3

accept_leftmost_improvement

Alternative acceptance function for multi-dimensional scores in which
order (left to right, e.g. first to last) denotes relevance.

Description

Alternative acceptance function for multi-dimensional scores in which order (left to right, e.g. first
to last) denotes relevance.

Usage

accept_leftmost_improvement(current_score, best_score, ..., tolerance = 0)

Arguments

current_score One- or multi-dimensional score from the current optimizing iteration (double
or vector of doubles)

best_score Best one- or multi-dimensional score found so far (double or vector of doubles)

... Ignored arguments that may be used by alternative acceptance functions

tolerance Tolerance value: When comparing score vectors from left to right, differences
within +/- tol won’t immediately shortcut the comparison at this point, allowing
improvement in a less important score to exhibit some influence

Value

Boolean, TRUE if current score should be taken as the new optimal score, FALSE otherwise

assign_from_table Distributes samples based on a sample sheet.

Description

Distributes samples based on a sample sheet.

Usage

assign_from_table(batch_container, samples)

4 assign_in_order

Arguments

batch_container

Instance of BatchContainer class

samples data.frame with samples (a sample sheet). This data.frame (or tibble::tibble())
should contain samples together with their locations. No .sample_id column
can be present in the sample sheet. In batch_container already has samples
assigned, the function will check if samples in batch_container are identical
to the ones in the samples argument.

Value

Returns a new BatchContainer.

Examples

bc <- BatchContainer$new(
dimensions = list(
plate = 2,
column = list(values = letters[1:3]),
row = 3

)
)

sample_sheet <- tibble::tribble(
~plate, ~column, ~row, ~sampleID, ~group,
1, "a", 1, 1, "TRT",
1, "b", 2, 2, "CNTRL",
2, "a", 1, 3, "TRT",
2, "b", 2, 4, "CNTRL",
2, "a", 3, 5, "TRT",

)
assign samples from the sample sheet
bc <- assign_from_table(bc, sample_sheet)

bc$get_samples(remove_empty_locations = TRUE)

assign_in_order Distributes samples in order.

Description

First sample is assigned to the first location, second sample is assigned to the second location, etc.

Usage

assign_in_order(batch_container, samples = NULL)

assign_random 5

Arguments

batch_container

Instance of BatchContainer class

samples data.frame with samples.

Value

Returns a new BatchContainer.

Examples

samples <- data.frame(sampId = 1:3, sampName = letters[1:3])
samples

bc <- BatchContainer$new(dimensions = c("row" = 3, "column" = 2))
bc

set.seed(42)
assigns samples randomly
bc <- assign_random(bc, samples)
bc$get_samples()

assigns samples in order
bc <- assign_in_order(bc)
bc$get_samples()

assign_random Assignment function which distributes samples randomly.

Description

Assignment function which distributes samples randomly.

Usage

assign_random(batch_container, samples = NULL)

Arguments

batch_container

Instance of BatchContainer class

samples data.frame with samples.

Value

Returns a new BatchContainer.

6 BatchContainer

Examples

samples <- data.frame(sampId = 1:3, sampName = letters[1:3])
samples

bc <- BatchContainer$new(dimensions = c("row" = 3, "column" = 2))
bc

set.seed(42)
assigns samples randomly
bc <- assign_random(bc, samples)
bc$get_samples()

assigns samples in order
bc <- assign_in_order(bc)
bc$get_samples()

BatchContainer R6 Class representing a batch container.

Description

Describes container dimensions and samples to container location assignment.

Details

A typical workflow starts with creating a BatchContainer. Then samples can be assigned to loca-
tions in that container.

Public fields

trace Optimization trace, a tibble::tibble()

Active bindings

scoring_f Scoring functions used for optimization. Each scoring function should receive a Batch-
Container. This function should return a floating point score value for the assignment. This a
list of functions. Upon assignment a single function will be automatically converted to a list
In the later case each function is called.

has_samples Returns TRUE if BatchContainer has samples.

has_samples_attr Returns TRUE if BatchContainer has sample atrributes assigned.

n_locations Returns number of locations in a BatchContainer.

n_dimensions Returns number of dimensions in a BatchContainer. This field cannot be as-
signed.

dimension_names character vector with dimension names. This field cannot be assigned.

samples Samples in the batch container. When assigning data.frame should not have column
named .sample_id column.

BatchContainer 7

samples_attr Extra attributes of samples. If set, this is included into BatchContainer$get_samples()
output.

assignment Sample assignment vector. Should contain NAs for empty locations.
Assigning this field is deprecated, please use $move_samples() instead.

Methods

Public methods:

• BatchContainer$new()

• BatchContainer$get_samples()

• BatchContainer$get_locations()

• BatchContainer$move_samples()

• BatchContainer$score()

• BatchContainer$copy()

• BatchContainer$print()

• BatchContainer$scores_table()

• BatchContainer$plot_trace()

Method new(): Create a new BatchContainer object.

Usage:
BatchContainer$new(locations_table, dimensions, exclude = NULL)

Arguments:

locations_table A table with available locations.
dimensions A vector or list of dimensions. Every dimension should have a name. Could be an

integer vector of dimensions or a named list. Every value of a list could be either dimension
size or parameters for BatchContainerDimension$new(). Can be used as an alternative to
passing locations_table.

exclude data.frame with excluded locations of a container. Only used together with dimen-
sions.

Examples:

bc <- BatchContainer$new(
dimensions = list(
"plate" = 3,
"row" = list(values = letters[1:3]),
"column" = list(values = c(1, 3))

),
exclude = data.frame(plate = 1, row = "a", column = c(1, 3), stringsAsFactors = FALSE)

)

bc

Method get_samples(): Return table with samples and sample assignment.

Usage:

8 BatchContainer

BatchContainer$get_samples(
assignment = TRUE,
include_id = FALSE,
remove_empty_locations = FALSE,
as_tibble = TRUE

)

Arguments:
assignment Return sample assignment. If FALSE, only samples table is returned, with out

batch assignment.
include_id Keep .sample_id in the table. Use TRUE for lower overhead.
remove_empty_locations Removes empty locations from the result tibble.
as_tibble Return tibble. If FALSE returns data.table. This should have lower overhead, as

internally there is a cached data.table.

Returns: table with samples and sample assignment.

Method get_locations(): Get a table with all the locations in a BatchContainer.

Usage:
BatchContainer$get_locations()

Returns: A tibble with all the available locations.

Method move_samples(): Move samples between locations
This method can receive either src and dst or locations_assignment.

Usage:
BatchContainer$move_samples(src, dst, location_assignment)

Arguments:
src integer vector of source locations
dst integer vector of destination locations (the same length as src).
location_assignment integer vector with location assignment. The length of the vector should

match the number of locations, NA should be used for empty locations.

Returns: BatchContainer, invisibly

Method score(): Score current sample assignment,

Usage:
BatchContainer$score(scoring)

Arguments:
scoring a function or a names list of scoring functions. Each function should return a numeric

vector.

Returns: Returns a named vector of all scoring functions values.

Method copy(): Create an independent copy (clone) of a BatchContainer

Usage:
BatchContainer$copy()

Returns: Returns a new BatchContainer

BatchContainer 9

Method print(): Prints information about BatchContainer.

Usage:
BatchContainer$print(...)

Arguments:

... not used.

Method scores_table(): Return a table with scores from an optimization.

Usage:
BatchContainer$scores_table(index = NULL, include_aggregated = FALSE)

Arguments:

index optimization index, all by default
include_aggregated include aggregated scores

Returns: a tibble::tibble() with scores

Method plot_trace(): Plot trace

Usage:
BatchContainer$plot_trace(index = NULL, include_aggregated = FALSE, ...)

Arguments:

index optimization index, all by default
include_aggregated include aggregated scores
... not used.

Returns: a ggplot2::ggplot() object List of scoring functions. Tibble with batch container
locations. Tibble with sample information and sample ids. Sample attributes, a data.table.
Vector with assignment of sample ids to locations. Cached data.table with samples assignment.
Validate sample assignment.

Examples

--
Method `BatchContainer$new`
--

bc <- BatchContainer$new(
dimensions = list(
"plate" = 3,
"row" = list(values = letters[1:3]),
"column" = list(values = c(1, 3))

),
exclude = data.frame(plate = 1, row = "a", column = c(1, 3), stringsAsFactors = FALSE)

)

bc

10 BatchContainerDimension

BatchContainerDimension

R6 Class representing a batch container dimension.

Description

R6 Class representing a batch container dimension.

R6 Class representing a batch container dimension.

Public fields

name dimension name.

values vector of dimension values.

Active bindings

size Returns size of a dimension.

short_info Returns a string summarizing the dimension. E.g., "mydim<size=10>".

Methods

Public methods:
• BatchContainerDimension$new()

• BatchContainerDimension$clone()

Method new(): Create a new BatchContainerDimension object.
This is usually used implicitly via BatchContainer$new().

Usage:
BatchContainerDimension$new(name, size = NULL, values = NULL)

Arguments:
name Dimension name, a character string. Requiered.
size Dimension size. Setting this implies that dimension values are 1:size.
values Explicit list of dimension values. Could be numeric, character or factor.

It is required to provide dimension namd and either size of values.

Examples:
plate_dimension <- BatchContainerDimension$new("plate", size=3)
row_dimension <- BatchContainerDimension$new("row", values = letters[1:3])
column_dimension <- BatchContainerDimension$new("column", values = 1:3)

bc <- BatchContainer$new(
dimensions = list(plate_dimension, row_dimension, column_dimension),
exclude = data.frame(plate = 1, row = "a", column = c(1, 3), stringsAsFactors = FALSE)

)

bc

batch_container_from_table 11

Method clone(): The objects of this class are cloneable with this method.

Usage:
BatchContainerDimension$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `BatchContainerDimension$new`
--

plate_dimension <- BatchContainerDimension$new("plate", size=3)
row_dimension <- BatchContainerDimension$new("row", values = letters[1:3])
column_dimension <- BatchContainerDimension$new("column", values = 1:3)

bc <- BatchContainer$new(
dimensions = list(plate_dimension, row_dimension, column_dimension),
exclude = data.frame(plate = 1, row = "a", column = c(1, 3), stringsAsFactors = FALSE)

)

bc

batch_container_from_table

Creates a BatchContainer from a table (data.frame/tibble::tibble) con-
taining sample and location information.

Description

Creates a BatchContainer from a table (data.frame/tibble::tibble) containing sample and location
information.

Usage

batch_container_from_table(tab, location_cols)

Arguments

tab A table with location and sample information. Table rows with all NAs in sample
information columns are treated as empty locations.

location_cols Names of columns containing information about locations.

Value

A BatchContainer assigned samples.

12 compile_possible_subgroup_allocation

Examples

tab <- data.frame(
row = rep(1:3, each = 3),
column = rep(1:3, 3),
sample_id = c(1, 2, 3, NA, 5, 6, 7, NA, 9)

)
bc <- batch_container_from_table(tab, location_cols = c("row", "column"))

compile_possible_subgroup_allocation

Compile list of all possible ways to assign levels of the allocation vari-
able to a given set of subgroups

Description

All information needed to perform this function (primarily the number and size of subgroups plus
the levels of the allocation variable) are contained in and extracted from the subgroup object.

Usage

compile_possible_subgroup_allocation(
subgroup_object,
fullTree = FALSE,
maxCalls = 1e+06

)

Arguments

subgroup_object

A subgrouping object as returned by form_homogeneous_subgroups()

fullTree Boolean: Enforce full search of the possibility tree, independent of the value of
maxCalls

maxCalls Maximum number of recursive calls in the search tree, to avoid long run times
with very large trees

Value

List of possible allocations; Each allocation is an integer vector of allocation levels that are assigned
in that order to the subgroups with given sizes

complete_random_shuffling 13

complete_random_shuffling

Reshuffle sample indices completely randomly

Description

This function was just added to test early on the functionality of optimize_design() to accept a
permutation vector rather than a list with src and dst indices.

Usage

complete_random_shuffling(batch_container, ...)

Arguments

batch_container

The batch-container.

... Other params that are passed to a generic shuffling function (like the iteration
number).

Value

A random permutation of the sample assignment in the container.

Examples

data("invivo_study_samples")
bc <- BatchContainer$new(

dimensions = c("plate" = 2, "column" = 5, "row" = 6)
)
scoring_f <- osat_score_generator("plate", "Sex")
bc <- optimize_design(

bc, scoring = scoring_f, invivo_study_samples,
max_iter = 100,
shuffle_proposal_func = complete_random_shuffling

)

drop_order Drop highest order interactions

Description

Drop highest order interactions

Usage

drop_order(.terms, m = -1)

14 form_homogeneous_subgroups

Arguments

.terms terms.object

m order of interaction (highest available if -1)

first_score_only Aggregation of scores: take first (primary) score only

Description

This function enables comparison of the results of two scoring functions by just basing the decision
on the first element. This reflects the original behavior of the optimization function, just evaluating
the ’auxiliary’ scores for the user’s information.

Usage

first_score_only(scores, ...)

Arguments

scores A score or multiple component score vector

... Parameters to be ignored by this aggregation function

Value

The aggregated score, i.e. the first element of a multiple-component score vector.

Examples

first_score_only(c(1, 2, 3))

form_homogeneous_subgroups

Form groups and subgroups of ’homogeneous’ samples as defined by
certain variables and size constraints

Description

Form groups and subgroups of ’homogeneous’ samples as defined by certain variables and size
constraints

form_homogeneous_subgroups 15

Usage

form_homogeneous_subgroups(
batch_container,
allocate_var,
keep_together_vars = c(),
n_min = NA,
n_max = NA,
n_ideal = NA,
subgroup_var_name = NULL,
prefer_big_groups = TRUE,
strict = TRUE

)

Arguments

batch_container

Batch container with all samples assigned that are to be grouped and sub-grouped

allocate_var Name of a variable in the samples table to inform possible groupings, as (sub)group
sizes must add up to the correct totals

keep_together_vars

Vector of column names in sample table; groups are formed by pooling samples
with identical values of all those variables

n_min Minimal number of samples in one sub(!)group; by default 1

n_max Maximal number of samples in one sub(!)group; by default the size of the
biggest group

n_ideal Ideal number of samples in one sub(!)group; by default the floor or ceiling of
mean(n_min,n_max), depending on the setting of prefer_big_groups

subgroup_var_name

An optional column name for the subgroups which are formed (or NULL)

prefer_big_groups

Boolean; indicating whether or not bigger subgroups should be preferred in case
of several possibilities

strict Boolean; if TRUE, subgroup size constraints have to be met strictly, implying
the possibility of finding no solution at all

Value

Subgroup object to be used in subsequent calls to compile_possible_subgroup_allocation()

16 get_order

generate_terms Generate terms.object (formula with attributes)

Description

Generate terms.object (formula with attributes)

Usage

generate_terms(.tbl, ...)

Arguments

.tbl data

... columns to skip (unquoted)

Value

terms.object

get_order Get highest order interaction

Description

Get highest order interaction

Usage

get_order(.terms)

Arguments

.terms terms.object

Value

highest order (numeric).

invivo_study_samples 17

invivo_study_samples A sample list from an in vivo experiment with multiple treatments and
2 strains

Description

This sample list is intended to be used in connection with the "invivo_study_treatments" data
object

Usage

data(invivo_study_samples)

Format

An object of class "tibble"

AnimalID The animal IDs, i.e. unique identifiers for each animal

Strain Strain (A or B)

Sex Female (F) or Male (M)

BirthDate Date of birth, not available for all the animals

Earmark Markings to distinguish individual animals, applied on the left (L), right (R) or both(B)
ears

ArrivalWeight Initial body weight of the animal

Arrival weight Unit Unit of the body weight, here: grams

Litter The litter IDs, grouping offspring from one set of parents

Author(s)

Guido Steiner

invivo_study_treatments

A treatment list together with additional constraints on the strain and
sex of animals

Description

This treatment list is intended to be used in connection with the "invivo_study_samples" data
object

Usage

data(invivo_study_treatments)

18 L1_norm

Format

An object of class "tibble"

Treatment The treatment to be given to an individual animal (1-3, plus a few untreated cases)

Strain Strain (A or B) - a constraint which kind of animal may receive the respective treatment

Sex Female (F) or Male (M) - a constraint which kind of animal may receive the respective treat-
ment

Author(s)

Guido Steiner

L1_norm Aggregation of scores: L1 norm

Description

This function enables comparison of the results of two scoring functions by calculating an L1 norm
(Manhattan distance from origin).

Usage

L1_norm(scores, ...)

Arguments

scores A score or multiple component score vector

... Parameters to be ignored by this aggregation function

Value

The L1 norm as an aggregated score.

Examples

L1_norm(c(2, 2))

L2s_norm 19

L2s_norm Aggregation of scores: L2 norm squared

Description

This function enables comparison of the results of two scoring functions by calculating an L2 norm
(euclidean distance from origin). Since this is only used for ranking solutions, the squared L2 norm
is returned.

Usage

L2s_norm(scores, ...)

Arguments

scores A score or multiple component score vector
... Parameters to be ignored by this aggregation function

Value

The squared L2 norm as an aggregated score.

Examples

L2s_norm(c(2, 2))

locations_table_from_dimensions

Create locations table from dimensions and exclude table

Description

Create locations table from dimensions and exclude table

Usage

locations_table_from_dimensions(dimensions, exclude)

Arguments

dimensions A vector or list of dimensions. Every dimension should have a name. Could be
an integer vector of dimensions or a named list. Every value of a list could be
either dimension size or parameters for BatchContainerDimension$new().

exclude data.frame with excluded locations of a container.

Value

a tibble::tibble() with all the available locations.

20 longitudinal_subject_samples

longitudinal_subject_samples

Subject sample list with group and time plus controls

Description

A sample list with 9 columns as described below. There are 3 types of records (rows) indicated by
the SampleType variable. Patient samples, controls and spike-in standards. Patient samples were
collected over up to 7 time points. Controls and SpikeIns are QC samples for distribution of the
samples on 96 well plates.

Usage

data(longitudinal_subject_samples)

Format

An object of class "tibble"

SampleID A unique sample identifier.

SampleType Indicates whether the sample is a patient sample, control oder spike-in.

SubjectID The subject identifier.

Group Indicates the treatment group of a subject.

Week Sampling time points in weeks of study.

Sex Subject Sex, Female (F) or Male (M).

Age Subject age.

BMI Subject Body Mass Index.

SamplesPerSubject Look up variable for the number of samples per subject. This varies as not
subject have samples from all weeks.

Author(s)

Juliane Siebourg

mk_exponentially_weighted_acceptance_func 21

mk_exponentially_weighted_acceptance_func

Alternative acceptance function for multi-dimensional scores with ex-
ponentially downweighted score improvements from left to right

Description

Alternative acceptance function for multi-dimensional scores with exponentially downweighted
score improvements from left to right

Usage

mk_exponentially_weighted_acceptance_func(
kappa = 0.5,
simulated_annealing = FALSE,
temp_function = mk_simanneal_temp_func(T0 = 500, alpha = 0.8)

)

Arguments

kappa Coefficient that determines how quickly the weights for the individual score
improvements drop when going from left to right (i.e. first to last score). Weight
for the first score’s delta is 1, then the original delta multiplied with kappa^(p-1)
for the p’th score

simulated_annealing

Boolean; if TRUE, simulated annealing (SA) will be used to minimize the
weighted improved score

temp_function In case SA is used, a temperature function that returns the annealing temperature
for a certain iteration number

Value

Acceptance function which returns TRUE if current score should be taken as the new optimal score,
FALSE otherwise

mk_plate_scoring_functions

Create a list of scoring functions (one per plate) that quantify the spa-
tially homogeneous distribution of conditions across the plate

Description

Create a list of scoring functions (one per plate) that quantify the spatially homogeneous distribution
of conditions across the plate

22 mk_plate_scoring_functions

Usage

mk_plate_scoring_functions(
batch_container,
plate = NULL,
row,
column,
group,
p = 2,
penalize_lines = "soft"

)

Arguments

batch_container

Batch container (bc) with all columns that denote plate related information

plate Name of the bc column that holds the plate identifier (may be missing or NULL
in case just one plate is used)

row Name of the bc column that holds the plate row number (integer values starting
at 1)

column Name of the bc column that holds the plate column number (integer values start-
ing at 1)

group Name of the bc column that denotes a group/condition that should be distributed
on the plate

p p parameter for minkowski type of distance metrics. Special cases: p=1 - Man-
hattan distance; p=2 - Euclidean distance

penalize_lines How to penalize samples of the same group in one row or column of the plate.
Valid options are: ’none’ - there is no penalty and the pure distance metric
counts, ’soft’ - penalty will depend on the well distance within the shared plate
row or column, ’hard’ - samples in the same row/column will score a zero dis-
tance

Value

List of scoring functions, one per plate, that calculate a real valued measure for the quality of the
group distribution (the lower the better).

Examples

data("invivo_study_samples")
bc <- BatchContainer$new(

dimensions = c("column" = 6, "row" = 10)
)
bc <- assign_random(bc, invivo_study_samples)
scoring_f <- mk_plate_scoring_functions(

bc,
row = "row", column = "column", group = "Sex"

)
bc <- optimize_design(bc, scoring = scoring_f, max_iter = 100)

mk_simanneal_acceptance_func 23

plot_plate(bc$get_samples(), .col = Sex)

mk_simanneal_acceptance_func

Generate acceptance function for an optimization protocol based on
simulated annealing

Description

Generate acceptance function for an optimization protocol based on simulated annealing

Usage

mk_simanneal_acceptance_func(
temp_function = mk_simanneal_temp_func(T0 = 500, alpha = 0.8)

)

Arguments

temp_function A temperature function that returns the annealing temperature for a certain cycle
k

Value

A function that takes parameters (current_score, best_score, iteration) for an optimization
step and return a Boolean indicating whether the current solution should be accepted or dismissed.
Acceptance probability of a worse solution decreases with annealing temperature.

mk_simanneal_temp_func

Create a temperature function that returns the annealing temperature
at a given step (iteration)

Description

Supported annealing types are currently "Exponential multiplicative", "Logarithmic multiplicative",
"Quadratic multiplicative" and "Linear multiplicative", each with dedicated constraints on alpha.
For information, see http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-
for-simulated-annealing-artificial-intelligence/

Usage

mk_simanneal_temp_func(T0, alpha, type = "Quadratic multiplicative")

24 mk_subgroup_shuffling_function

Arguments

T0 Initial temperature at step 1 (when k=0)

alpha Rate of cooling

type Type of annealing protocol. Defaults to the quadratic multiplicative method
which seems to perform well.

Value

Temperature at cycle k.

mk_subgroup_shuffling_function

Created a shuffling function that permutes samples within certain sub-
groups of the container locations

Description

If length(n_swaps)==1, the returned function may be called an arbitrary number of times. If
length(n_swaps)>1 the returned function may be called length(n_swaps) timed before returning
NULL, which would be the stopping criterion if all requested swaps have been exhausted.

Usage

mk_subgroup_shuffling_function(
subgroup_vars,
restrain_on_subgroup_levels = c(),
n_swaps = 1

)

Arguments

subgroup_vars Column names of the variables that together define the relevant subgroups
restrain_on_subgroup_levels

Permutations can be forced to take place only within a level of the factor of the
subgrouping variable. In this case, the user must pass only one subgrouping
variable and a number of levels that together define the permuted subgroup.

n_swaps Vector with number of swaps to be proposed in successive calls to the returned
function (each value should be in valid range from 1..floor(n_locations/2))

Value

Function to return a list with length n vectors src and dst, denoting source and destination index
for the swap operation, or NULL if the user provided a defined protocol for the number of swaps and
the last iteration has been reached

mk_subgroup_shuffling_function 25

Examples

set.seed(42)

bc <- BatchContainer$new(
dimensions = c(
plate = 2,
row = 4, col = 4

)
)

bc <- assign_in_order(bc, samples = tibble::tibble(
Group = c(rep(c("Grp 1", "Grp 2", "Grp 3", "Grp 4"), each = 8)),
ID = 1:32

))

here we use a 2-step approach:
1. Assign samples to plates.
2. Arrange samples within plates.

overview of sample assagnment before optimization
plot_plate(bc,

plate = plate, row = row, column = col, .color = Group
)

Step 1, assign samples to plates
scoring_f <- osat_score_generator(

batch_vars = c("plate"), feature_vars = c("Group")
)
bc <- optimize_design(

bc,
scoring = scoring_f,
max_iter = 10, # the real number of iterations should be bigger
n_shuffle = 2,
quiet = TRUE

)
plot_plate(

bc,
plate = plate, row = row, column = col, .color = Group

)

Step 2, distribute samples within plates
scoring_f <- mk_plate_scoring_functions(

bc,
plate = "plate", row = "row", column = "col", group = "Group"

)
bc <- optimize_design(

bc,
scoring = scoring_f,
max_iter = 50,
shuffle_proposal_func = mk_subgroup_shuffling_function(subgroup_vars = c("plate")),
aggregate_scores_func = L2s_norm,
quiet = TRUE

26 mk_swapping_function

)
plot_plate(bc,

plate = plate, row = row, column = col, .color = Group
)

mk_swapping_function Create function to propose swaps of samples on each call, either with
a constant number of swaps or following a user defined protocol

Description

If length(n_swaps)==1, the returned function may be called an arbitrary number of times. If
length(n_swaps)>1 and called without argument, the returned function may be called length(n_swaps)
timed before returning NULL, which would be the stopping criterion if all requested swaps have
been exhausted. Alternatively, the function may be called with an iteration number as the only
argument, giving the user some freedom how to iterate over the sample swapping protocol.

Usage

mk_swapping_function(n_swaps = 1)

Arguments

n_swaps Vector with number of swaps to be proposed in successive calls to the returned
function (each value should be in valid range from 1..floor(n_samples/2))

Value

Function to return a list with length n vectors src and dst, denoting source and destination index
for the swap operation, or NULL if the user provided a defined protocol for the number of swaps
and the last iteration has been reached.

Examples

data("invivo_study_samples")
bc <- BatchContainer$new(

dimensions = c("plate" = 2, "column" = 5, "row" = 6)
)
scoring_f <- osat_score_generator("plate", "Sex")
optimize_design(

bc, scoring = scoring_f, invivo_study_samples,
max_iter = 100,
shuffle_proposal_func = mk_swapping_function(1)

)

multi_trt_day_samples 27

multi_trt_day_samples Unbalanced treatment and time sample list

Description

A sample list with 4 columns SampleName, Well, Time and Treatment Not all treatments are avali-
able at all time points. All samples are placed on the same plate.

Usage

data(multi_trt_day_samples)

Format

An object of class "tibble"

Author(s)

siebourj

optimize_design Generic optimizer that can be customized by user provided functions
for generating shuffles and progressing towards the minimal score

Description

Generic optimizer that can be customized by user provided functions for generating shuffles and
progressing towards the minimal score

Usage

optimize_design(
batch_container,
samples = NULL,
scoring = NULL,
n_shuffle = NULL,
shuffle_proposal_func = NULL,
acceptance_func = accept_strict_improvement,
aggregate_scores_func = identity,
check_score_variance = TRUE,
autoscale_scores = FALSE,
autoscaling_permutations = 100,
autoscale_useboxcox = TRUE,
sample_attributes_fixed = FALSE,
max_iter = 10000,
min_delta = NA,
quiet = FALSE

)

28 optimize_design

Arguments

batch_container

An instance of BatchContainer.

samples A data.frame with sample information. Should be NULL if the BatchContainer
already has samples in it.

scoring Scoring function or a named list() of scoring functions.

n_shuffle Vector of length 1 or larger, defining how many random sample swaps should be
performed in each iteration. If length(n_shuffle)==1, this sets no limit to the
number of iterations. Otherwise, the optimization stops if the swapping protocol
is exhausted.

shuffle_proposal_func

A user defined function to propose the next shuffling of samples. Takes priority
over n_shuffle if both are provided. The function is called with a BatchCon-
tainer bc and an integer parameter iteration for the current iteration num-
ber, allowing very flexible shuffling strategies. Mapper syntax is supported (see
purrr::as_mapper()). The returned function must either return a list with
fields srcand dst (for pairwise sample swapping) or a numeric vector with a
complete re-assigned sample order.

acceptance_func

Alternative function to select a new score as the best one. Defaults to strict im-
provement rule, i.e. all elements of a score have to be smaller or equal in order
to accept the solution as better. This may be replaced with an alternative accep-
tance function included in the package (e.g. mk_simanneal_acceptance_func())
or a user provided function. Mapper syntax is supported (see purrr::as_mapper()).

aggregate_scores_func

A function to aggregate multiple scores AFTER (potential) auto-scaling and BE-
FORE acceptance evaluation. If a function is passed, (multi-dimensional) scores
will be transformed (often to a single double value) before calling the acceptance
function. E.g., see first_score_only() or worst_score(). Note that partic-
ular acceptance functions may require aggregation of a score to a single scalar in
order to work, see for example those generated by mk_simanneal_acceptance_func().
Mapper syntax is supported (see purrr::as_mapper()).

check_score_variance

Logical: if TRUE, scores will be checked for variability under sample permu-
tation and the optimization is not performed if at least one subscore appears to
have a zero variance.

autoscale_scores

Logical: if TRUE, perform a transformation on the fly to equally scale scores to
a standard normal. This makes scores more directly comparable and easier to
aggregate.

autoscaling_permutations

How many random sample permutations should be done to estimate autoscaling
parameters. (Note: minimum will be 20, regardless of the specified value)

autoscale_useboxcox

Logical; if TRUE, use a boxcox transformation for the autoscaling if possible at
all. Requires installation of the bestNormalize package.

optimize_multi_plate_design 29

sample_attributes_fixed

Logical; if TRUE, sample shuffle function may generate altered sample at-
tributes at each iteration. This affects estimation of score distributions. (Pa-
rameter only relevant if shuffle function does introduce attributes!)

max_iter Stop optimization after a maximum number of iterations, independent from
other stopping criteria (user defined shuffle proposal or min_delta).

min_delta If not NA, optimization is stopped as soon as successive improvement (i.e. eu-
clidean distance between score vectors from current best and previously best
solution) drops below min_delta.

quiet If TRUE, suppress non-critical warnings or messages.

Value

A trace object

Examples

data("invivo_study_samples")
bc <- BatchContainer$new(

dimensions = c("plate" = 2, "column" = 5, "row" = 6)
)
bc <- optimize_design(bc, invivo_study_samples,

scoring = osat_score_generator("plate", "Sex"),
max_iter = 100

)
plot_plate(bc$get_samples(), .col = Sex)

optimize_multi_plate_design

Convenience wrapper to optimize a typical multi-plate design

Description

The batch container will in the end contain the updated experimental layout

Usage

optimize_multi_plate_design(
batch_container,
across_plates_variables = NULL,
within_plate_variables = NULL,
plate = "plate",
row = "row",
column = "column",
n_shuffle = 1,
max_iter = 1000,
quiet = FALSE

)

30 osat_score

Arguments

batch_container

Batch container (bc) with all columns that denote plate related information
across_plates_variables

Vector with bc column name(s) that denote(s) groups/conditions to be balanced
across plates, sorted by relative importance of the factors

within_plate_variables

Vector with bc column name(s) that denote(s) groups/conditions to be spaced
out within each plate, sorted by relative importance of the factors

plate Name of the bc column that holds the plate identifier

row Name of the bc column that holds the plate row number (integer values starting
at 1)

column Name of the bc column that holds the plate column number (integer values start-
ing at 1)

n_shuffle Vector of length 1 or larger, defining how many random sample swaps should
be performed in each iteration. See optimize_design().

max_iter Stop any of the optimization runs after this maximum number of iterations. See
optimize_design().

quiet If TRUE, suppress informative messages.

Value

A list with named traces, one for each optimization step

osat_score Compute OSAT score for sample assignment.

Description

The OSAT score is intended to ensure even distribution of samples across batches and is closely
related to the chi-square test contingency table (Yan et al. (2012) doi:10.1186/1471216413689).

Usage

osat_score(bc, batch_vars, feature_vars, expected_dt = NULL, quiet = FALSE)

Arguments

bc BatchContainer with samples or data.table/data.frame where every row is a
location in a container and a sample in this location.

batch_vars character vector with batch variable names to take into account for the score
computation.

feature_vars character vector with sample variable names to take into account for score com-
putation.

https://doi.org/10.1186/1471-2164-13-689

osat_score_generator 31

expected_dt A data.table with expected number of samples sample variables and batch
variables combination. This is not required, however it does not change during
the optimization process. So it is a good idea to cache this value.

quiet Do not warn about NAs in feature columns.

Value

a list with two attributes: $score (numeric score value), $expected_dt (expected counts data.table
for reuse)

Examples

sample_assignment <- tibble::tribble(
~ID, ~SampleType, ~Sex, ~plate,
1, "Case", "Female", 1,
2, "Case", "Female", 1,
3, "Case", "Male", 2,
4, "Control", "Female", 2,
5, "Control", "Female", 1,
6, "Control", "Male", 2,
NA, NA, NA, 1,
NA, NA, NA, 2,

)

osat_score(sample_assignment,
batch_vars = "plate",
feature_vars = c("SampleType", "Sex")

)

osat_score_generator Convenience wrapper for the OSAT score

Description

This function wraps osat_score() in order to take full advantage of the speed gain without man-
aging the buffered objects in the user code.

Usage

osat_score_generator(batch_vars, feature_vars, quiet = FALSE)

Arguments

batch_vars character vector with batch variable names to take into account for the score
computation.

feature_vars character vector with sample variable names to take into account for score com-
putation.

quiet Do not warn about NAs in feature columns.

32 plate_effect_example

Value

A function that returns the OSAT score for a specific sample arrangement

Examples

sample_assignment <- tibble::tribble(
~ID, ~SampleType, ~Sex, ~plate,
1, "Case", "Female", 1,
2, "Case", "Female", 1,
3, "Case", "Male", 2,
4, "Control", "Female", 2,
5, "Control", "Female", 1,
6, "Control", "Male", 2,
NA, NA, NA, 1,
NA, NA, NA, 2,

)

osat_scoring_function <- osat_score_generator(
batch_vars = "plate",
feature_vars = c("SampleType", "Sex")

)

osat_scoring_function(sample_assignment)

plate_effect_example Example dataset with a plate effect

Description

Here top and bottom row were both used as controls (in dilutions). The top row however was
affected differently than the bottom one. This makes normalization virtually impossible.

Usage

data(plate_effect_example)

Format

An object of class "tibble"

row Plate row

column Plate column

conc Sample concentration

log_conc Logarithm of sample concentration

treatment Sample treatment

readout Readout from experiment

plot_plate 33

Author(s)

Balazs Banfai

plot_plate Plot plate layouts

Description

Plot plate layouts

Usage

plot_plate(
.tbl,
plate = plate,
row = row,
column = column,
.color,
.alpha = NULL,
.pattern = NULL,
title = paste("Layout by", rlang::as_name(rlang::enquo(plate))),
add_excluded = FALSE,
rename_empty = FALSE

)

Arguments

.tbl a tibble (or data.frame) with the samples assigned to locations. Alternatively
a BatchContainter with samples can be supplied here.

plate optional dimension variable used for the plate ids

row the dimension variable used for the row ids

column the dimension variable used for the column ids

.color the continuous or discrete variable to color by

.alpha a continuous variable encoding transparency

.pattern a discrete variable encoding tile pattern (needs ggpattern)

title string for the plot title

add_excluded flag to add excluded wells (in bc$exclude) to the plot. A BatchContainer must
be provided for this.

rename_empty whether NA entries in sample table should be renamed to ’empty‘.

Value

the ggplot object

34 shuffle_grouped_data

Author(s)

siebourj

Examples

nPlate <- 3
nColumn <- 4
nRow <- 6

treatments <- c("CTRL", "TRT1", "TRT2")
timepoints <- c(1, 2, 3)

bc <- BatchContainer$new(
dimensions = list(
plate = nPlate,
column = list(values = letters[1:nColumn]),
row = nRow

)
)

sample_sheet <- tibble::tibble(
sampleID = 1:(nPlate * nColumn * nRow),
Treatment = rep(treatments, each = floor(nPlate * nColumn * nRow) / length(treatments)),
Timepoint = rep(timepoints, floor(nPlate * nColumn * nRow) / length(treatments))

)

assign samples from the sample sheet
bc <- assign_random(bc, samples = sample_sheet)

plot_plate(bc$get_samples(),
plate = plate, column = column, row = row,
.color = Treatment, .alpha = Timepoint

)

plot_plate(bc$get_samples(),
plate = plate, column = column, row = row,
.color = Treatment, .pattern = Timepoint

)

shuffle_grouped_data Generate in one go a shuffling function that produces permutations
with specific constraints on multiple sample variables and group sizes
fitting one specific allocation variable

Description

Generate in one go a shuffling function that produces permutations with specific constraints on
multiple sample variables and group sizes fitting one specific allocation variable

shuffle_grouped_data 35

Usage

shuffle_grouped_data(
batch_container,
allocate_var,
keep_together_vars = c(),
keep_separate_vars = c(),
n_min = NA,
n_max = NA,
n_ideal = NA,
subgroup_var_name = NULL,
report_grouping_as_attribute = FALSE,
prefer_big_groups = FALSE,
strict = TRUE,
fullTree = FALSE,
maxCalls = 1e+06

)

Arguments

batch_container

Batch container with all samples assigned that are to be grouped and sub-grouped

allocate_var Name of a variable in the samples table to inform possible groupings, as (sub)group
sizes must add up to the correct totals

keep_together_vars

Vector of column names in sample table; groups are formed by pooling samples
with identical values of all those variables

keep_separate_vars

Vector of column names in sample table; items with identical values in those
variables will not be put into the same subgroup if at all possible

n_min Minimal number of samples in one sub(!)group; by default 1

n_max Maximal number of samples in one sub(!)group; by default the size of the
biggest group

n_ideal Ideal number of samples in one sub(!)group; by default the floor or ceiling of
mean(n_min,n_max), depending on the setting of prefer_big_groups

subgroup_var_name

An optional column name for the subgroups which are formed (or NULL)
report_grouping_as_attribute

Boolean, if TRUE, add an attribute table to the permutation functions’ output,
to be used in scoring during the design optimization

prefer_big_groups

Boolean; indicating whether or not bigger subgroups should be preferred in case
of several possibilities

strict Boolean; if TRUE, subgroup size constraints have to be met strictly, implying
the possibility of finding no solution at all

fullTree Boolean: Enforce full search of the possibility tree, independent of the value of
maxCalls

36 shuffle_with_constraints

maxCalls Maximum number of recursive calls in the search tree, to avoid long run times
with very large trees

Value

Shuffling function that on each call returns an index vector for a valid sample permutation

shuffle_with_constraints

Shuffling proposal function with constraints.

Description

Can be used with optimize_design to improve convergence speed.

Usage

shuffle_with_constraints(src = TRUE, dst = TRUE)

Arguments

src Expression to define possible source locations in the samples/locations table.
Usually evaluated based on BatchContainer$get_samples(include_id = TRUE,
as_tibble = FALSE) as an environment (see also with()). A single source lo-
cation is selected from rows where the expression evaluates toTRUE.

dst Expression to define possible destination locations in the samples/locations ta-
ble. Usually evaluated based on BatchContainer$get_samples() as an envi-
ronment. Additionally a special variable .src is available in this environment
which describes the selected source row from the table.

Value

Returns a function which accepts a BatchContainer and an iteration number (i). This func-
tion returns a list with two names: src vector of length 2 and dst vector of length two. See
BatchContainer$move_samples().

Examples

set.seed(43)

samples <- data.frame(
id = 1:100,
sex = sample(c("F", "M"), 100, replace = TRUE),
group = sample(c("treatment", "control"), 100, replace = TRUE)

)

bc <- BatchContainer$new(
dimensions = c("plate" = 5, "position" = 25)

shuffle_with_subgroup_formation 37

)

scoring_f <- function(samples) {
osat_score(
samples,
"plate",
c("sex", "group")

)$score
}

in this example we treat all the positions in the plate as equal.
when shuffling we enforce that source location is non-empty,
and destination location has a different plate number
bc <- optimize_design(

bc,
scoring = scoring_f,
samples,
shuffle_proposal = shuffle_with_constraints(

source is non-empty location
!is.na(.sample_id),
destination has a different plate
plate != .src$plate

),
max_iter = 10

)

shuffle_with_subgroup_formation

Compose shuffling function based on already available subgrouping
and allocation information

Description

Compose shuffling function based on already available subgrouping and allocation information

Usage

shuffle_with_subgroup_formation(
subgroup_object,
subgroup_allocations,
keep_separate_vars = c(),
report_grouping_as_attribute = FALSE

)

Arguments

subgroup_object

A subgrouping object as returned by form_homogeneous_subgroups()

38 sum_scores

subgroup_allocations

A list of possible assignments of the allocation variable as returned by compile_possible_subgroup_allocation()

keep_separate_vars

Vector of column names in sample table; items with identical values in those
variables will not be put into the same subgroup if at all possible

report_grouping_as_attribute

Boolean, if TRUE, add an attribute table to the permutation functions’ output,
to be used in scoring during the design optimization

Value

Shuffling function that on each call returns an index vector for a valid sample permutation

sum_scores Aggregation of scores: sum up all individual scores

Description

Aggregation of scores: sum up all individual scores

Usage

sum_scores(scores, na.rm = FALSE, ...)

Arguments

scores A score or multiple component score vector

na.rm Boolean. Should NA values be ignored when obtaining the maximum? FALSE
by default as ignoring NA values may render the sum meaningless.

... Parameters to be ignored by this aggregation function

Value

The aggregated score, i.e. the sum of all indicidual scores.

Examples

sum_scores(c(3, 2, 1))

validate_samples 39

validate_samples Validates sample data.frame.

Description

Validates sample data.frame.

Usage

validate_samples(samples)

Arguments

samples A data.frame having a sample annotation per row.

worst_score Aggregation of scores: take the maximum (i.e. worst score only)

Description

This function enables comparison of the results of two scoring functions by just basing the decision
on the largest element. This corresponds to the infinity-norm in ML terms.

Usage

worst_score(scores, na.rm = FALSE, ...)

Arguments

scores A score or multiple component score vector

na.rm Boolean. Should NA values be ignored when obtaining the maximum? FALSE
by default as ignoring NA values may hide some issues with the provided scor-
ing functions and also the aggregated value cannot be seen as the proper infinity
norm anymore.

... Parameters to be ignored by this aggregation function

Value

The aggregated score, i.e. the value of the largest element in a multiple-component score vector.

Examples

worst_score(c(3, 2, 1))

Index

∗ datasets
invivo_study_samples, 17
invivo_study_treatments, 17
longitudinal_subject_samples, 20
multi_trt_day_samples, 27
plate_effect_example, 32

accept_leftmost_improvement, 3
assign_from_table, 3
assign_in_order, 4
assign_random, 5

batch_container_from_table, 11
BatchContainer, 6, 6, 11, 28, 30
BatchContainer$move_samples(), 36
BatchContainer$new(), 10
BatchContainerDimension, 10
BatchContainerDimension$new(), 7, 19
BatchContainter, 33

character, 6, 30, 31
compile_possible_subgroup_allocation,

12
complete_random_shuffling, 13

data.frame, 7, 11, 19, 30
data.table, 8, 30, 31
drop_order, 13

first_score_only, 14
first_score_only(), 28
form_homogeneous_subgroups, 14

generate_terms, 16
get_order, 16
ggplot2::ggplot(), 9

invivo_study_samples, 17
invivo_study_treatments, 17

L1_norm, 18

L2s_norm, 19
list(), 28
locations_table_from_dimensions, 19
longitudinal_subject_samples, 20

mk_exponentially_weighted_acceptance_func,
21

mk_plate_scoring_functions, 21
mk_simanneal_acceptance_func, 23
mk_simanneal_acceptance_func(), 28
mk_simanneal_temp_func, 23
mk_subgroup_shuffling_function, 24
mk_swapping_function, 26
multi_trt_day_samples, 27

optimize_design, 27
optimize_design(), 30
optimize_multi_plate_design, 29
osat_score, 30
osat_score(), 31
osat_score_generator, 31

plate_effect_example, 32
plot_plate, 33
purrr::as_mapper(), 28

shuffle_grouped_data, 34
shuffle_with_constraints, 36
shuffle_with_subgroup_formation, 37
sum_scores, 38

terms.object, 14, 16
tibble, 8, 33
tibble::tibble, 11
tibble::tibble(), 6, 9, 19

validate_samples, 39

worst_score, 39
worst_score(), 28

40

	accept_leftmost_improvement
	assign_from_table
	assign_in_order
	assign_random
	BatchContainer
	BatchContainerDimension
	batch_container_from_table
	compile_possible_subgroup_allocation
	complete_random_shuffling
	drop_order
	first_score_only
	form_homogeneous_subgroups
	generate_terms
	get_order
	invivo_study_samples
	invivo_study_treatments
	L1_norm
	L2s_norm
	locations_table_from_dimensions
	longitudinal_subject_samples
	mk_exponentially_weighted_acceptance_func
	mk_plate_scoring_functions
	mk_simanneal_acceptance_func
	mk_simanneal_temp_func
	mk_subgroup_shuffling_function
	mk_swapping_function
	multi_trt_day_samples
	optimize_design
	optimize_multi_plate_design
	osat_score
	osat_score_generator
	plate_effect_example
	plot_plate
	shuffle_grouped_data
	shuffle_with_constraints
	shuffle_with_subgroup_formation
	sum_scores
	validate_samples
	worst_score
	Index

