designit - Blocking and Randomization for Experimental Design
Intelligently assign samples to batches in order to reduce batch effects. Batch effects can have a significant impact on data analysis, especially when the assignment of samples to batches coincides with the contrast groups being studied. By defining a batch container and a scoring function that reflects the contrasts, this package allows users to assign samples in a way that minimizes the potential impact of batch effects on the comparison of interest. Among other functionality, we provide an implementation for OSAT score by Yan et al. (2012, <doi:10.1186/1471-2164-13-689>).
Last updated 12 days ago
design-of-experimentsrandomization
7.37 score 7 stars 24 scripts 532 downloads